Spectroscopic Identification of Organic Molecules

¹H NMR Spectroscopy

Exclusively for the summer course at East China University of Science and Technology

2007.07.12

Prepared by Professor Sangho Koo

Not for sale or distribution but only for the class

¹H NMR Spectroscopy

- 1. Basic Theory of NMR
 - 1.1 Magnetic Properties of Nuclei

Experiment by Stern-Gerlach: A beam of H-atoms splits into two by a magnetic field.

TABLE 3.1 Type of nuclear spin number, *I*, with various combinations of atomic mass and atomic number.

I	Atomic Mass	Atomic Number	Example of Nuclei
Half-integer	Odd	Odd	${}^{1}_{1}\mathrm{H}(\frac{1}{2}), {}^{3}_{1}\mathrm{H}(\frac{1}{2}), {}^{15}_{7}\mathrm{N}(\frac{1}{2}),$ ${}^{19}_{9}\mathrm{F}(\frac{1}{2}), {}^{31}_{15}\mathrm{P}(\frac{1}{2})$
Half-integer	Odd	Even	$^{13}_{6}C(\frac{1}{2}), ^{17}_{8}O(\frac{1}{2}), ^{29}_{14}Si(\frac{1}{2})$
Integer	Even	Odd	${}^{2}_{1}H(1), {}^{14}_{7}N(1), {}^{10}_{5}B(3)$
Zero	Even	Even	${}^{12}_{6}C(0), {}^{16}_{8}O(0), {}^{34}_{16}S(0)$

1.2 Spinning Nuclei in a Magnetic Field

A spinning nucleus (I = 1/2) in a uniform magnetic field (Bo):

Precessional motions along side (α , +1/2) and the opposite side (β , -1/2) to the applied magnetic field. Precessional angle \rightarrow 54.5°.

Precessional frequency (ω): Larmor frequency,

 $\boldsymbol{\omega} = (1/2\pi) \cdot \boldsymbol{\gamma} \cdot \mathbf{B}_0 = \{\boldsymbol{\mu} / (\mathbf{I} \cdot \mathbf{h})\} \cdot \mathbf{B}_0 \quad \because \boldsymbol{\gamma} = \boldsymbol{\mu} / p = \boldsymbol{\mu} / (\mathbf{I} \cdot \mathbf{h}) = 2\pi \boldsymbol{\mu} / (\mathbf{I} \cdot \mathbf{h})$

Zeeman Level (ΔE) = $2\mu \cdot B_0$

FIGURE 3.3 Classical representation of a proton precessing in a magnetic field of magnitude B_0 in analogy with a precessing spinning top.

$$\frac{N_{\beta}}{N_{\alpha}} = e^{-\Delta E/k_B T} \approx 1 - \frac{\Delta E}{k_B T} = 1 - \frac{\gamma \hbar B_0}{k_B T} \quad (1-10)$$

where k_B is the Boltzmann constant (= 1.3805 x 10⁻²³ J K⁻¹) and T is the absolute temperature in K.

FIGURE 3.2 Two proton energy levels in a magnetic field of magnitude B_0 . *N* is population of spins in the upper (N_β) and lower (N_α) energy states. The direction of the magnetic field (B_0) is up, parallel to the ordinate, and field strength (B_0) increases to the right. Larger (B_0) fields increase ΔE .

Example) $B_0 = 1.41 \text{ T} (60 \text{ MHz}) \text{ at } 300 \text{ K} (27 \degree \text{C}),$ $\Delta E \approx 2.4 \text{ x } 10^{-2} \text{ J/mole}$ $N_\beta \approx 0.9999904 N_\alpha$ For 300 MHz, $N_\beta \approx 0.999995 N_\alpha$

1.3 NMR Experiment

Alternating magnetic field B_1 , which is perpendicular to B_0 is applied to the sample to induce the transition between the Zeeman levels.

 $\Delta \mathbf{E} = \mathbf{h}\mathbf{v} = (\mu/\mathbf{I}) \cdot \mathbf{B}_0$, allowed transition: $\Delta \mathbf{m} = \pm 1$.

Spin-lattice relaxation:

Photon without radiation, giving energy to the vibrational system.

Photon with radiation (minor effect)

Relaxation time: T₁

Spin-Spin relaxation time:

Spin exchange

Relaxation time: T₂

$\mathbf{B}_{\text{effective}} = \mathbf{B}_0 - \alpha \cdot \mathbf{B}_0 = \mathbf{B}_0 \cdot (1 - \alpha)$

 α : diamagnetic shielding constant – reflects chemical and magnetic environments of the nuclei.

 α : 10⁻⁵ (proton) ~ 10⁻², if B₀ = 15 K gauss (~ 60 MHz), then B₀· α = 0.15 gauss = ~ 600 Hz.

2. Chemical Shift δ (ppm): Dimensionless parameter, independent of B₀

Chemical shifts have their origin in **diamagnetic and paramagnetic shielding effects** produced by circulation of both bonding and non-bonding electrons in the neighborhood of the nuclei.

 $\delta_{AB} = (v_A - v_B)/B_0$ Example) $B_0: 300 \text{ MHz}, v_A - v_B = 150 \text{ Hz}$ $\delta_{AB} = 150 \text{ Hz} / 300 \text{ MHz} = 150 \text{ Hz} / 300 \text{ x} 10^6 \text{ Hz} = 0.5 \text{ ppm}$

B₀: 600 MHz, $v_{\rm A} - v_{\rm B} = 300 \text{ Hz}$

 $\delta_{AB} = 300 \text{ Hz} / 600 \text{ MHz} = 300 \text{ Hz} / 600 \text{ x} 10^{6} \text{ Hz} = 0.5 \text{ ppm}$

(in CDC1₃) for comparison.

Reference compound $\delta = 0$ ppm.

- (1) TMS (tetramethylsilane)
- (2) DSS (sodium 2,2-dimethyl-2-silapentane-5-sulfonate)

$$-$$
Si $-$ TMS $-$ Si $-$ CH₂CH₂CH₂SO₃Na⁺ DSS

Chemical shifts referred to DSS or TMS agree within ~0.02 ppm. The sharp singlet is not influenced by pH changes. The multiplet of CH_2 in DSS are not significant at concentrations < 1%.

• Empirical Additive Rules (1) Dailey, Shoolery's Rule (*J. Am. Chem. Soc.* 1955, 77, 3977) X-CH₂-Y $\tau = 9.77 - \sum S(\delta)$ $\delta = 10 - \tau$ $\delta = 0.23 + \sum S(\delta)$

(2) Electronegativity of X
 CH₃-CH₂-X
 E.N. (X) = 0.684 · (δ_{CH2} - δ_{CH3}) + 1.78

Table 4.3 Substituent constants, $S(\delta)$, for proton resonances in substituted methanes

Substituent	<i>S(δ</i>) (ppm)
Cl	2.53
Br	2.33
Ι	1.82
NRR'	1.57
OR	2.36
SR	1.64
CR-O	1.70
CR = CR'R'	1.32
C≡CH	1.44
C≡N	1.70
CH ₃	0.47
Phenyl	1.85
OH	2.56
OCOR	3.13
COOR	1.55
CF ₃	1.14

3. Spin-Spin Coupling Constants (J)

Nuclei changes the local magnetic field (effective magnetic filed) of each nucleus by attractive or repulsive interaction of each magnetic quantum number. Since nuclear magnetic moments are independent of the applied field B_0 , so is the coupling constant J.

AX system: $\delta_{AB} \cdot B_0 / J \ge 10$

Since δ_{AX} = $(\nu_A-\nu_B)/$ $B_0,$ then $\left(\nu_A-\nu_B\right)/$ J $~\geq~10$ AX System

H_A-C-CH₂ and H_A-C-CH₃

CH ₂ group	m _T	CH ₃ group			m _T
αα	+1		ααα		$+\frac{3}{2}$
αβ βα	0	ααβ	αβα	βαα	$+\frac{1}{2}$
ββ	-1	αββ	βαβ βββ	ββα	$-\frac{1}{2}$ $-\frac{3}{2}$

FIGURE 3.32 Pascal's triangle. Relative intensities of first-order multiplets; n = number of equivalent coupling nuclei of spin 1/2 (e.g., protons).

Characteristic splitting patterns in the ¹H NMR spectra of some alkyl groups.

3-1. Vicinal H-H Couplings (³J_{HH})

(1) The couplings in both saturated and unsaturated systems are largely transmitted via the σ -electrons, and these are always positive.

In general,
$${}^{3}J(sp^{2}-sp^{2}) > {}^{3}J(sp-sp) > {}^{3}J(sp^{3}-sp^{3})$$

25 ~ 7 Hz 9.1 Hz 12 ~ 2 Hz

(2) Dihedral angle dependency

Karplus (1963): $J = 4.22 - 0.5 \cdot \cos \phi + 4.5 \cdot \cos^2 \phi$

FIGURE 3.57 The vicinal Karplus correlation. Relationship between dihedral angle (ϕ) and coupling constant for vicinal protons.

Figure 4.22 The Karplus curve for the dependence of vicinal H - H coupling on the dihedral angle ϕ : line, theoretical curve; shaded area, range of empirical results

A. Six-membered Ring Systems (all sp³ carbons)

TABLE 3.6. Calculated and observed coupling constants, J, in cyclohexanes based on bond angle.

	Dihedral Angle	Calculated J(Hz)	Observed J(Hz)
Axial-axial	180°	9	8-14 (usually 8-10)
Axial- equatorial	60°	1.8	1-7 (usually 2-3)
Equatorial- equatorial	60°	1.8	1-7 (usually 2-3)

Examples

⁽²⁾ The value of J is reduced by an electron withdrawing group

3 Anomeric effect

(4)

⁽⁵⁾ Small ³J

a. dihedral angle ~90°

b. epoxide H's

 $0^{\circ} \le \theta \le 90^{\circ}$ $J = 6.6 \cdot \cos^{2}\theta + 2.6 \cdot \sin^{2}\theta$ $90^{\circ} \le \theta \le 180^{\circ}$ $J = 11.6 \cdot \cos^{2}\theta + 2.6 \cdot \sin^{2}\theta$

6.6 (0°), 2.7 (90°), 11.7 (180°)

Examples

C. Amino Acid Derivatives

(3) CH–CH–X: Increasing electro-negativity of X gives smaller ${}^{3}J$ ${}^{3}J = J_{2} - \alpha$: Ex. electronegativity of X:

$^{3}J = J_{0} - \alpha \cdot E_{X}$	Ex: ele	ctronegativity o	f X; J_0, α :	constants
	J	J ₀ (Hz)	α (Hz)	
CH ₃ –CH ₂ X	³ J	9.4	0.7	
H _{C=C} H	³ J _{cis}	24.5	4.2	
н Х	³ J _{trans}	27.3	3.5	
H H	$^{3}J_{cis}$	17.7	2.4	
н Х	³ J _{trans}	13.6	2.8	
CICI				
٨	$^{3}J_{cis}$ or J_{BC}	12.6	1.4	
H _B	$^{3}J_{trans}$ or J_{AC}	8.8	1.7	
H _C				
X ^				

Examples

3-2. Geminal H-H Couplings ($^2J_{HH}$): –20 ~ +40 Hz

- (1) Factors that influence the value of ^{2}J
 - a. S-P Hybridization

 $H \xrightarrow{\theta}_{C} H$ As θ increases, more s-character in C–H that gives higher value of ²J

Methane (CH₄) sp³ ${}^{2}J = -12.4$ Hz Ethylene (CH₂=CH₂) sp² ${}^{2}J = +2.5$ Hz H^{2} ${}^{2}J = -13.0$ H^{2} ${}^{2}J = -4.0$

b. Electronegative atom in α -position leads to a positive shift in $^2J_{HH}$ (Inductive effect) Examples

c. Eletronegative atom in $\beta\mbox{-}position$ leads to a negative shift in $^2J_{HH}$ Example

1

1. α -Substitution	ı		
Сн	- 12.4	O ↓>C _{H₂}	+ 5.5
с _{Н3} СI	- 10.8	RN=C _{H₂}	+ 16.5
C _{H3} Cl₂	- 7.5	0=C _{H2}	+42.2
HN_CH2	+ 2.0		- 6
CI CH2	± 1.5		0
2. β-Substitution	n		
H H H C=C H	+ 2.5	c_{L} c_{L	- 1.4
FC=C	- 3.2	R_2P $c=c H_H$	+ 2.0
H ₃ CO H ₃ CO	- 2.0	H Li C=C H	+ 7.1
3. Adjacent π bo	nds		
C H _{\$} CN CN−C H ₂ −CN	- 16.9 - 20.4	<u>с</u> -с _{H3}	- 14.5

 Table 4.10
 The influence of substituents on geminal-coupling constants

d. Hyper-conjugation effects

Electron withdrawing substituents which take electrons from antisymmetric orbitals of CH₂ give negative contribution.

- 19.2 Hz

– 20.3 Hz

Examples

1

◆ Determination of J_{HH} when two protons are chemically equivalent Use JHD J_{HH} = 6.514 x J_{HD} CHDCl₂ J_{HD} = -1.15 Hz ∴ J_{HH} = (-1.15) x 6.514 = -7.5 Hz

³J from ¹³C-satellite proton resonance

J. Org. Chem. 1983, 48, 4139

	H ₉ ,H ₁₀ δ (ppm)	$^{3}J_{9,10}(Hz)$	$^{1}J_{H-C}$ (Hz)
Diol	4.61	10.4	142.2
Diacetate	6.07	5.6	152.5

3-3 Long-range couplings

Review:

Chem. Rev. 1969, 69, 757.

Pure & Appl. Chem. 1964, 14, 15.

(1) Sigma (σ) – bond couplings

 $^{2}J \geq ^{3}J \gg ^{4}J$ $4 \sim 12 \text{ Hz}$ usually 0 Hz

a. W-letter Rule or W-coupling (or M-coupling)

J. Am. Chem. Soc. 1961, 83, 2769.

Examples

Stereochemical applications

(1) 3β -acetoxy-20-oxo-13 β ,28-epoxy-30-lupane (Ring D/E junction: cis or trans?)

4.02 (dd, J = 7.3, 2.0 Hz, 1H) 3.09 (d, J = 7.3 Hz, 1H)

 H_A and H_B should have ⁴J coupling in this structure

18β-H, 19α-H This is the righ structure

② Structure of chamaecynone (*Tetrahedron Lett.* 1966, 3663)

c. To distinguish three and erythree isomers of certain α -glycols and related compounds

(2) ${}^{5}J \sigma$ -bond couplings

(3) Coupling in unsaturated systems

a. Aromatic compounds

 $\mathbf{J}_{AB} = \mathbf{J}_{AB}(\pi) + \mathbf{J}_{AB}(\sigma)$

J_{AB}(π): generally small (~ 2Hz); not much change in bond order of π orbital (P_{AB}).

P _{A,B}		$J_{AB}(\pi)$ calculated	J _{AB} (total) observed
P _{1,2}	0.67	0.80	8~9
P _{1,3}	0.00	0	2~5
P _{1,4}	-0.17	0.05	0.5

P _{A,B}		$J_{AB}(\pi)$ calculated	J _{AB} (total) observed
P _{1,2}	0.72	0.95	8.6
P _{2,3}	0.60	0.66	6.0
P _{1,3}	0.00	0	1.4
P _{1,4}	-0.36	0.23	0.6

b. Unsaturated non-aromatic compounds

Karplus, M. J. Am. Chem. Soc. 1960, 82, 4432.

	$J_{AB}(\pi)$	$J_{AB} \left(J_{AB}^{\pi} + J_{AB}^{\sigma} \right)$
Н-С=С-Н	+1.5	+7~+18
H−C≡C−H	+4.6	+9.1
Н-С=С-С-Н	-1.7	$-1.4 \sim -1.8$
Н−С≡С−С−Н	-3.7	-2.3
Н-С=С=С-Н	-6.7	-7.0 ~ -6.1
Н-С-С=С-С-Н	+2.0	+2.0
Н−С−С≡С−С−Н	+2.9	+2.7
Н-С=С=С=С-Н	+7.8	+8.95

Examples

Examples

Generally, transoid coupling > cisoid coupling <exceptions>

d. Homoallylic coupling: ${}^{5}J = 0.6 \sim 3.0 \text{ Hz}$

2

J_{9a,12a} = 3.5 Hz J_{9a,12e} = 2.9 Hz

3

④ Interbenzylic couplings

1/3 of typical homoallylic couplings

5 1,4-Dihydrobenzene systems – IJI: usually large

12

ÌH

Ĥ

Н

f. Long-range couplings in polycyclic aromatic systems

① polynuclear heterocyclic system: zig-zag path

O J_Ar-CH,Ar-H: Stronger J if coupled via a "localized" double bond.

g. Zigzag couplings in simple aromatic phenols

3-4. $^{2}J_{HD}$: small and broad

D: 0.015% Natural abundance; H: 99.985 %

D: I (spin quantum number) = 1,

possible spin states = -1, 0, +1 \rightarrow triplet

 ${}^{2}J_{HD} = 2.3$ Hz, quintet (5) Possible spin state = -2, -1, 0, +1, +2 <u>Only ${}^{2}J_{HD}$ can be detected</u>.

$$^{2}J_{HD} = 1.9$$
 Hz, quintet

* Isotope Chemical Shift

CH₄ CH₃D 0.019±0.001 ppm up-field shift CH₂D₂ 0.027±0.003 CHD₃ 0.045±0.004

 $\begin{array}{c} \textcircled{2} & CH_3COCH_3 \\ & CD_3COCH_2D & 0.034 \pm 0.001 \text{ ppm up-field shift} \\ \textcircled{3} & {}^{12}CF_3H \end{array}$

¹³CF₃H 0.126 ppm up-field shift

3-5. ¹⁴N–H Coupling

 14 N: Natural abundance 99.63%; I (spin quantum number) = 1

 1 J_{14N-H}

(1)

- a. Fast exchanging H: sharp and singlet without N-H coupling
- b. Slow exchanging H: broad peak around 2.0~2.4 ppm (quadrupole relaxation) cf. amide–H: 6–9 ppm

c. R_3N^+ -H: ${}^1J_{+N-H} = \sim 50-60$ Hz, triplet (broad)

Examples

② $CH_3CH_2CH_2NH_3^+$ ${}^{1}J_{14NH} = \sim 50 \text{ Hz at } 6.7 \text{ ppm}$

• NMR spectrum of

$$Br^{-}_{N+} H_{K} = 5.5 \text{ Hz} \quad {}^{3}J_{14NHA} = 5.5 \text{ Hz} \quad {}^{3}J_{14NHK} = 2.6 \text{ Hz} \quad {}^{2}J_{14NHM} = 3.5 \text{ Hz}$$

$$|^{2}J_{14NCH3}| = 0.5 \text{ Hz} \quad {}^{3}J_{HKHM} = 14.8 \text{ Hz} \quad {}^{3}J_{HAHM} = 8.3 \text{ Hz} \quad {}^{2}J_{HAHK} = -4.1 \text{ Hz}$$

3-6. ¹⁵N–H Coupling

¹⁵N: Natural abundance = 0.36%; I (spin quantum number) = 1/2¹⁵N-enriched compounds should be prepared! %S = 0.43 x ¹J(¹⁵N-H) – 6 $%S = 100\cos\phi(\cos\phi-1)$ φ: bond angles between N and its substituents ⁺NH₄: $\phi = 107.3^{\circ} \rightarrow 22.9\%$ S-character ⁺NH₄: ${}^{1}J_{15NH} = 73.2 \text{ Hz} \rightarrow 25.47\% \text{ S-character}$

$^{1}J_{15NH}$

$$\begin{array}{c|c} -\mathrm{NH}_2 & \mathbf{62} \ \mathrm{Hz} \ (\mathbf{20.7}) & & & \\ \mathrm{R}-\overset{+}{\mathrm{NH}}_3 & \mathbf{73}-\mathbf{76} \ \mathrm{Hz} \ (\mathbf{26.7}) & & \\ \mathrm{R}-\overset{O}{\mathrm{C}} & & \\ \mathrm{R}-\overset{O}{\mathrm{C}}-\mathrm{N-H} & \mathbf{88}-\mathbf{92} \ \mathrm{Hz} \ (\mathbf{33.6}) & & \overset{\mathsf{Ph}}{\mathrm{Ph}} \overset{+}{\mathrm{NH}}_2 & \mathbf{92.6} \ \mathrm{Hz} \ (\mathbf{33.3}) \end{array}$$

3-7.¹³C–H Coupling

¹³C: Natural abundance 1.11%; I (spin quantum number) = 1/2S-character of C–H bond $%S = 0.20 \cdot {}^{1}J_{13C-H}$

Based on INDO–MO calculation,

Improved equation

 $%S = (^{1}J_{13CH} + 18.4)/5.7$

Calculated ${}^{1}J_{13CH} = 189 \text{ Hz}$ C H Observed ${}^{1}J_{13CH} = 180 \text{ Hz}$

3-8. ³¹P–H Coupling

³¹P: Natural abundance 100%; I (spin quantum number) = 1/2²J ~ ³J

$$\begin{array}{c} | \\ -P-C-H \\ -P-C-C-H \\ -P-O-C-H \end{array}$$

$$\begin{array}{c} 2 \\ J_{31PH} = 3 \sim 25 \text{ Hz} \\ J_{31PH} = 3 \sim 25 \text{ Hz} \\ -P-O-C-H \end{array}$$

$$RO - P + H = 515 \sim 695 \text{ Hz} \qquad R + P + H = 515 \sim 695 \text{ Hz} \qquad R + P + H = 7525 \text{ Hz}$$

$$X = 0. \text{ S}$$

Examples

② CH₃−PH₂: ¹J_{31PH} = 207 Hz ④

O H₂C-O-P-OCH₃ H H 11.9 Hz

²J_{H1F} = 49 Hz ³J_{H2axF} = 43.5 Hz ³J_{H2eqF} < 3 Hz

2

F

9

4. Environmental Effect

4.1 Sample

Sensitivity ∝ N·{(]	$(+1)/I^{3}$	$\mu^3 \cdot B_0^2$
Relative sensitivity:	$^{1}\mathrm{H}$	1.00
	¹⁹ F	0.834
	¹³ C	0.0159
	^{2}H	0.0096

4.2 Solvent Effect

• Solvent effect on the **external standard** – Sample peaks move on the solvent used, but no effect on the external standard (reference).

• Solvent effect on the **internal standard** – Both sample and the reference peaks are subjected to the solvent effect.

• Chemical interaction with a solvent

(a) Solvation

CI-

(i) H-bonding with a solvent (including π -complex formation)

CI -OH, -NH, -CO₂H, PhOH have a large temperature-dependent solvent shift.

Solvation with benzene

③ Carbonyl reference plane rules

(ii) Indirect solvent effect caused by solvation on the near-by functional groups

CH₃'s are non-equivalent

2

Chemical shift in CCl₄ and in pyridine are different.

(b) Proton exchange (-OH, -NH₂, -----) -OH + XH* \longrightarrow -OH* + XH $\tau^* = \sqrt{2/(\pi \cdot \Delta \nu)}$

 τ^* : life time; $\Delta\nu$: chemical shift difference between –OH and –XH* in Hz

Solvent effect: fixation of exchangeable H's by forming strong H-bond with DMSO or acetone.

* Add D₂O to make sure of the presence of alcoholic proton.

Intramolecular H-bonding (δ in cyclohexane)

5. Chemical Shift – semi-quantitative considerations 5.1. Factors responsible for chemical shifts

 $H_{effect} = H_0 \cdot (1 - \sigma)$

 σ = shielding constant: $4\pi e^2/(3mc^2)\int rp(r)dr = 17.8$ ppm for H

If a hydrogen atom is placed in an electric field E (in esu unit), $\Delta \sigma = - (881/226) \cdot (a^3 E^2/mc^2) = -0.74 \times 10^{-18} E^2 \text{ (downfield shift)}$ a: Bohr radius, 0.529 x 10⁻⁸ cm for H m: weight of electron

Examples

- (a) a unit charge located at 1Å, 1.5Å, 2Å $E = 4.8 \times 10^{6}$, 2.14 x 10⁶, 1.2 x 10⁶ esu $\Delta \sigma = 17$ ppm, 3.4 ppm, 1.1 ppm downfield shift
- (b) a dipole

 $E = \mu (1 + 3\cos^2 \theta)^{1/2} / R^3$

μ: dipole moment, R: distance

4 ~5 ppm electric field effect of the dipole

Dipole moment of C=O is ca. 2 x 10^{-10} esu $\sigma_E = -4.6 x 10^{-6} (4.6 \text{ ppm downfield shift by the C=O dipole})$ 1 Local diamagnetic effects

Dailey, Shoolery rule

CH₃-CH₂-X system

Electronegativity of X = $0.684 \cdot (\delta_{CH2} - \delta_{CH3}) + 1.78$ in ppm = $0.02315 \cdot (\Delta CH_3 - \Delta CH_2) + 1.71$ in Hz

Assumption

1) paramagnetic contribution ≈ 0

2) neighboring atom's contribution \approx constant

2 Paramagnetic effects - induced dipole by polarizable atom (directional)

"Due to non-spherical electron distribution of the particular atom" \rightarrow downfield shift

※ Temperature-independent paramagnetizm

* Paramagnetic effects can be neglected in ¹H NMR, but important for ¹³C, ¹⁹F NMR.

③ The magnetic anisotropy effect of neighboring groups

Magnetic susceptibility (χ)

 $\mu = \chi H_0$

 μ : Induced magnetic dipole moment in H_0 .

In a magnetic field H_0 , H atom experiences secondary magnetic field H' $H' = -H_0 \cdot \Delta \chi_z (1 - 3\cos^2 \theta)/3R^3$ McConnell's equation

atom x

"Anisotropy shift" $\Delta \sigma = -H'/H_0 = \Delta \chi_z (1 - 3\cos^2\theta)/3R^3$

If $\Delta \chi_z < 0$; $3R^3 > 0$; The sign of $\Delta \sigma$ depends on the value of $(1 - 3\cos^2\theta)$ When $\theta = 55^{\circ}44$, $\Delta \sigma = 0$ $\Delta \sigma > 0 \rightarrow +$ up-field shift (shielding) $\Delta \sigma < 0 \rightarrow -$ down-field shift (deshielding)

► If
$$\chi_{xx} \neq \chi_{yy} \neq \chi_{zz}$$

 $\Delta \chi_z = \chi_{zz} - \chi_{yy}$
 $\Delta \chi_x = \chi_{xx} - \chi_{yy}$
 $\Delta \sigma = \Delta \sigma_z + \Delta \sigma_x$

 $\Delta \chi < 0$ when $\chi_{zz} > \chi_{xx}$ or χ_{yy}

(a) $C \equiv X$ The shielding zone (cone)

Figure 4.8 Schematic representation of the magnetic anisotropic effect of the triple bond

e.g.

(b) C–X

(c) C–C

$$\theta_{ax} = 67^{\circ}$$

 $r_{ax} = 2.35 \text{ Å}$

 $\theta_{eq} = 30^{\circ}$

 $r_{eq} = 2.80 \text{ Å}$

FIGURE 3.24 Deshielding of equatorial proton of a rigid six-membered ring.

cf.

CO₂H CH₃ 1.15

cholesterol

5α-cholestanol

5 1.27 H₃C、

CH₃ 1.65 α -pinene

2

0.83

1.95

1.77

⁽⁵⁾ Deshielding

– **0.57 ppm**

(g) "Quinolizidine" type

Axial hydrogens α to N are shielded by ~ 1 ppm relative to the equatorial hydrogens

(h) Interatomic currents: Ring currents

 $\Delta \chi \text{ (benzene)} = -96 \text{ x } 10^{-30} \text{ cm}^3 \cdot \text{esu}$ $\Delta \sigma = -\text{H}^3/\text{H}_0 = \Delta \chi_z (1 - 3\cos^2\theta)/3\text{R}^3$

Magnetic field induced by ring currents in the benzene rings

Examples

2

[10]-paracyclophane

③ J. Am. Chem. Soc. 1967, 89, 5458.

(4) Aromatic $(4n+2)\pi$ system

The shielding effect of the ring current is proportional to the area of the ring.

⁽⁵⁾ Doubly-bridged [16] annulene

Tetrahedron Lett. 1982, 23, 1221; 1985, 26, 3087; 1985, 26, 3091.

Figure 4.13 Schematic comparison of n.m.r. spectra of the annulenes 25 and 27 with 14 and 16 π -electrons, respectively

(i) Shielding effect by three-membered rings

(1) Cyclopropane ring

Examples

1

2

0.30 ppm up-field shifted

3

5

(2) Other three-membered rings

5.2 Proton Chemical Shifts in Aromatic Molecules Substituted Benzenes

Spectroscopy for Organic Molecules Myong Ji Univ., Dept. of Chem.

Proton chemical shifts in aromatic molecules

Substituted benzenes

 $\delta_{\text{Ar-H}} = 7.27 + \Sigma P_{\text{i}}$

Table for the Pi values

subst.	Pio	Pi ^m	P _i P	subst.	Pio	P _i m	P _i P
NHMe	-0.9	-0.2	-0.7	Br	0.22	-0.1	-0.05
NH ₂	-0.8	-0.25	-0.65	C (sp)	0.2	-0.05	-0.05
NMe ₂	-0.65	-0.2	-0.65	Ph	0.2	0.05	-0.05
OH	-0.5	-0.1	-0.5	CN	0.25	0.2	0.3
OMe	-0.5	-0.1	-0.45	Ι	0.4	-0.25	0
OR	-0.35	-0.05	-0.3	NHCOR	0.4	-0.2	-0.3
F	-0.3	0	-0.25	N+H3	0.4	0.2	0.2
Me	-0.15	-0.1	-0.15	COAr	0.45	0.1	0.2
CMe ₃	-0.1	0	-0.25	CHO	0.55	0.2	0.3
OCOPh	-0.1	0.05	-0.1	COR	0.6	0.1	0.2
SH	-0.05	-0.1	-0.2	COOR	0.7	0.1	0.2
Cl	0	-0.05	-0.1	CONH ₂	0.7	0.2	0.25
SR	0.1	-0.1	-0.2	COCl	0.8	0.2	0.35
C (sp²)	0.15	0	-0.15	COOAr	0.9	0. 1 5	0.25
OCOR	0.2	-0.1	-0.2	NO ₂	0.95	0.25	0.4

Examples

Heteroaromatics

1. α -Protons are strongly up-field shifted by the heteroatom.

2. Asymmetric electron distribution: electron density is higher near the heteroatom, which lower the aromaticity

		б ррт	ρ_{exp}
		(relative to	
		benzene)	
ĥ	H-2	-1.31	0.91
4 3 H	Н-3	+ 0.16	1.01
N 2 H	H-4	- 0.26	0.98
••			

5.3 Carbonium Ions, Carbanions and Related Systems

Carbonium ions

$$R-X \xrightarrow{SbF_5} R^{(+)} + SbXF_5^{(-)}$$

Carbanions

Chemical shift (δppm)

М	Li	Mg	Zn	Al	Hg
α	-1.08	-0.68	0.15	-0.20	1.01
β	1.35	1.39	1.47	1.25	1.58
e.n. of M	1.0	1.2	1.5	1.5	1.9
	Ionic				Covalency

e.n.: electronegativity

2

more covalent character

 Table 4.1
 Proton resonances in carbocations and carbanions

6. Non-first-order Spin Systems

6-1. Nomenclature of the spin system

A₃ (singlet)

H₃C–X

A₂X₃ (quartet)(triplet) $-OCH_2CH_3$

 $A_2M_2X_3$ or $A_2X_2Y_3$ (triplet)(sextet)(triplet) -OCH₂CH₂CH₃

 A_6 (singlet) or A_3B_3 (2 singlet) $\overset{H_3C}{\underset{H_3C}{\succ}} \overset{R}{\underset{R'}{\succ}}$

A₉ (singlet)

 AX_6 or AX_3Y_3 (doublet or 2 doublet for Me) H₃C ́ Н₃С Н

For first-order spectra

(i) Chemical shift separation >> the coupling constant

(ii) Magnetically equivalent nuclei

The Pascal Triangle for I = 1/2

Magnetically equivalent nuclei vs. chemically equivalent nuclei

Magnetically equivalent nuclei $\xrightarrow{\frown}$ Chemically equivalent nuclei

CH₂F₂ $\begin{array}{c} H_{1} \\ H_{2} \\ H_{2} \\ H_{2} \\ H_{4} \\ \end{array} \begin{array}{c} J_{1,3} = J_{2,3} \\ J_{1,4} = J_{2,4} \\ J_{1,4} = J_{2,4} \end{array}$ A₂X₂ (magnetically equivalent)

Figure 2.21 Proton magnetic resonance spectrum of (a) difluoromethane, (b) 1,1-difluoroethylene (after Ref. 2), and (c) furan

6.2 Two-Spin Systems

Δν (Ha,Hb) /J (Ha,Hb)

AB

AX

AA'

 A_2

FIGURE 3.28 A two-proton system, spin coupling with a decreasing difference in chemical shifts and a large J value (10 Hz); the difference between AB and AX notation is explained in the text.

The AB System

Figure 5.5 Dependence of the AB system on the ratio $J/v_0\delta$; spectra illustrated are for values of $J/v_0\delta$ of (a) 1:3, (b) 1:1, (c) 5:3, and (d) 5:1.

Suppose $(v_A + v_B)/2 = X$, $v_A - v_B = \{(v_1 - v_4)(v_2 - v_3)\}^{1/2} = Y$ Then $v_A + v_B = 2X$, $v_A - v_B = Y$ Solve the two equations for v_A and v_B $v_A = (2X + Y)/2$ $v_B = (2X - Y)/2$ $\therefore v_A = (v_A + v_B)/2 + \{(v_1 - v_4)(v_2 - v_3)\}^{1/2}/2$ $v_B = (v_A + v_B)/2 - \{(v_1 - v_4)(v_2 - v_3)\}^{1/2}/2$ Even if one of the two protons is hidden, exact parameter can be determined.e.g.

Suppose $(v_2 - v_3) = X$ Then $(v_2 - v_3) / (v_1 - v_4) = X / (X + 2J) = I_1 / I_2 = I_4 / I_3 = 6 / 10$ Since J = 15.5 Hz, therefore X = 3J = 46.5 Hz

Some examples of the AB system

6.3 Three-Spin Systems

(1) $\rightarrow AX_2$ $AB_2 -$ A₃ AB₂ Α **X**2 A₃ OEt OH $\frac{\Delta v(A,B)}{J(A,B)}$ NO₂ $\frac{\Delta v(A,B)}{J(A,B)} \longrightarrow \infty$ CI CI 0₂N. - 0

e.g.

 $v_3 = 0, v_4 = 6.6 \text{ Hz}, v_5 = 19.3 \text{ Hz}, v_7 = 25.6 \text{ Hz}, v_8 = 27.7 \text{ Hz}$ Using the equation 4, $6.6 + 27.7 = (v_B - v_A) + 3J_{AB}/2$ According to the equations 1 and 2, $(v_B - v_A) = (19.3 + 25.6) / 2 = 22.5$ Therefore $J_{AB} = 7.86 \text{ Hz}$

Exercise 5.10 Analyse the AB₂ spectrum below and determine the parameters v_{A, v_B} , and J_{AB} .

(2) ABX System: normally 12 peaks and maximum 15 peaks $|v_X - v_A| >> J_{AX};$ $|v_X - v_B| >> J_{BX}$

Figure 5.17 Dependence of the ABX system on the parameter $v_A - v_B$: left, the AB portion; right, the X portion. The following parameters apply in all examples: $J_{AB} = 15.7$ Hz; $J_{AX} = 0$ Hz; and $J_{BX} = 7.7$ Hz. The relative chemical shifts $v_0\delta$ (AB) amount to (a) 56.7 Hz, (b) 18.7 Hz, (c) 5.0 Hz, and (d) -0.6 Hz. Experimental data from 2-furfuryl-(2)-acrolein form the basis for the calculated spectra (after Ref. 3)

Examples of ABX system

Peaks Analysis

1.
$$\mathbf{J}_{AB} = \mathbf{v}_3 - \mathbf{v}_1 = \mathbf{v}_4 - \mathbf{v}_2 = \mathbf{v}_7 - \mathbf{v}_5 = \mathbf{v}_8 - \mathbf{v}_6$$

$$2. v_{12} - v_9 = \mathbf{J}_{\mathbf{A}\mathbf{X}} + \mathbf{J}_{\mathbf{B}\mathbf{X}}$$

3.
$$v_i - v_{ii} = (J_{AX} + J_{BX}) / 2$$

 v_i , v_{ii} : center of the two AB's

4.
$$\mathbf{v}_{\mathbf{A}} = (\mathbf{v}_{\mathbf{A}'} + \mathbf{v}_{\mathbf{A}''}) / 2$$
, $\mathbf{v}_{\mathbf{B}} = (\mathbf{v}_{\mathbf{B}'} + \mathbf{v}_{\mathbf{B}''}) / 2$

Analysis of ABX assuming two AB sub-spectra

$$\begin{split} \nu_{i}, \nu_{ii}: \text{ center of the two AB's} \\ \Delta_{i} &= \nu_{A'} - \nu_{B'}, \quad \Delta_{ii} &= \nu_{A''} - \nu_{B''} \\ J_{AX} \cdot J_{BX} &> 0 \\ \nu_{A} &= (\nu_{i} + \nu_{ii})/2 + (\Delta_{i} + \Delta_{ii})/4 \\ \nu_{B} &= (\nu_{i} + \nu_{ii})/2 - (\Delta_{i} + \Delta_{ii})/4 \\ J_{AB} &= (\nu_{i} - \nu_{ii}) + (\Delta_{i} - \Delta_{ii})/2 \\ J_{BX} &= (\nu_{i} - \nu_{ii}) - (\Delta_{i} - \Delta_{ii})/2 \\ J_{AX} \cdot J_{BX} &< 0 \\ \nu_{A} &= (\nu_{i} + \nu_{ii})/2 + (\Delta_{i} - \Delta_{ii})/4 \\ \nu_{B} &= (\nu_{i} + \nu_{ii})/2 - (\Delta_{i} - \Delta_{ii})/4 \\ J_{AB} &= (\nu_{i} - \nu_{ii}) + (\Delta_{i} + \Delta_{ii})/2 \\ J_{BX} &= (\nu_{i} - \nu_{ii}) + (\Delta_{i} + \Delta_{ii})/2 \\ J_{BX} &= (\nu_{i} - \nu_{ii}) - (\Delta_{i} + \Delta_{ii})/2 \end{split}$$

Figure 5.10 The ABX system with the parameters $v_0\delta$ (AB) = 5.0 Hz, $J_{AB} = 8$ Hz, $J_{AX} = 4.2$ Hz and $J_{BX} = 1.8$ Hz. The ab subspectra in the AB portion are identified by the open and closed circles. The parameters used are those of 2-chloro-3-aminopyridine (after Ref. 1)

Figure 5.11 The ABX spectrum of 4-bromo-3-t-butylcyclopentene-2-one (91) (after Ref. 2): (a) AB portion, relative line frequencies in Hz; (b) X portion (in this case this lies at lower field); 60 MHz

In ABX system

If $(v_A - v_B)$ gets large then it becomes **AMX** system.

If v_X comes close to v_A , v_B then it becomes **ABC** system.

One can analyze **ABX** system as **AMX** system (first-order system)

			First-order analysis J	Observed J
	(a) $J_{AX} \cdot J_{BX} > 0$	J _{AB}	7.35 Hz	7.35 Hz
H _B CH ₃		J _{AX}	4.68 Hz	5.0 Hz
H _X N CH ₃		$J_{\rm BX}$	1.62 Hz	1.3 Hz
	(b) $J_{AX} \cdot J_{BX} < 0$	J _{AB}	7.35 Hz	7.35 Hz
		J _{AX}	4.45 Hz	5.0 Hz
		J _{BX}	0.75 Hz	-1.3 Hz

AMX system

Virtual coupling

Even though H_X is coupled only to H_A , H_X consist of more than two lines (four lines)

(3) ABC System: Maximum 15 lines

 H_B H_A No simple algebraic expressions. H_C CO_2H

Examples

6.4 Four-Spin Systems

(3) AA'XX': 24 lines

Normally 20 lines are observed

AA': Chemically equivalent but magnetically nonequivalent

(4) **AA'BB'**

If Δv_{AX} becomes small, AA'XX' becomes AA'BB'. 24 lines are observed.

7. Nuclear Overhauser Effect (NOE)

Change in NMR intensity via change in Boltzmann distribution of a nuclear spin by a **dipolar mechanism upon saturation of a second interacting nuclear spin.**

Dipolar mechanism maintains the relaxation (T_1) , thereby increasing ground state population \rightarrow increased intensity.

Explanation

Energy levels of an AX spin system

 W^{A} : transition probability of spin A W^{X} : transition probability of spin X W_{2} : transition probability between (1) and (4) (double quantum jump) or relaxation – important when T_{1}^{DD} is important.

 W_0 : transition probability between (2) and (3) (zero quantum jump) or relaxation.

Irradiation of X will saturate the transition $2 \rightarrow 1$ and $4 \rightarrow 3$. Therefore P₁ = P₂, P₃ = P₄ (P: population of each energy level).

Assuming that Before irradiation, $P_2 \approx P_3 = C$, $P_2 - P_1 = P_4 - P_3 = \Delta$ Before irradiation $P_1 = C - \Delta$ $P_2 = C$ $P_3 = C$ $P_4 = C + \Delta$ $\therefore P_4 - P_1 = 2\Delta$ After irradiation $P_1 = C - \Delta/2$ $P_2 = C - \Delta/2$ $P_3 = C + \Delta/2$ $P_4 = C + \Delta/2$ $\therefore P_4 - P_1 = \Delta$

Now, W_2 process increases P_4 and decrease P_1 , thereby restoring the population difference to its equilibrium value, which enhances transition of A (increased intensity of nuclei A).

 W_2 is very effective when T_1^{DD} (dipole-dipole) predominates.

There is a fractional enhancement of the A signal.

$$f = \frac{W_2 - W_0}{2W^A + W_2 + W_0} \left(\frac{\gamma_X}{\gamma_A}\right)$$

maximum limit: $\left(\frac{\gamma_X}{\gamma_A}\right)/2$ saturated or irradiated nuclei
observed nuclei

For proton, maximum N.O.E. = 50%; for carbon maximum N.O.E. = 200%

 $DMSO(d_6)$ is the best solvent for N.O.E. measurement. Solvent should be degassed, and preferably be sealed.

6 Three & erythro isomers of α -glycols (J. Am. Chem. Soc. 1972, 94, 2865).

Negative N.O.E. in multi-spin system

Exercise 2.13. Figure 2.28 shows the 80 MHz ¹H n.m.r spectrum of 2,4-dinitrophenyl-2-pyridylsulphide. Assign the protons to the structural formula given and estimate the coupling constants.

